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ABSTRACT  

We identified the co-infection of the SARS-CoV-2 Omicron and Delta variants in two 

epidemiologically unrelated patients with chronic kidney disease requiring 

haemodialysis. Both SARS-CoV-2 variants were co-circulating locally at the time of 

detection. Amplicon- and probe-based sequencing using short- and long-read 

technologies identified and quantified Omicron and Delta subpopulations in respiratory 

samples from the two patients. These findings highlight the importance of genomic 

surveillance in vulnerable populations.  

 

MAIN  
 

Since the declaration of the COVID-19 pandemic by the World Health Organization (WHO) 

on March 11th 2020, SARS-CoV-2 has gradually evolved into phylogenetically distinct 

lineages, some of which have been designated Variants of Concerns (VOCs).1,2 These variants 

differ in terms of transmissibility, capacity to cause severe disease and the ability to evade post-

vaccination derived immunity. The global prevalence of individual VOCs in different global 

regions has been affected by the timing and location of their emergence and the corresponding 

measures for COVID-19 control measures.3 Development and implementation of viral 

genomic surveillance and rapid sharing of genomic data has provided a critical capacity to 

distinguish and monitor SARS-CoV-2 variants and conduct risk assessments of their 

significance. Co-infection with different SARS-CoV-2 lineages was rarely reported during the 

first COVID-19 wave in 2020 prior to the introduction of vaccination programs,4–6 but it has 

been suggested that such co-infections could lead to greater severity and disease duration.6 

However, co-infections involving either VOC Delta or VOC Omicron have not yet been 

reported, nor have they been reported in immunosuppressed hosts, which may drive saltational 

evolution.7 Here, we report the first cases of co-infection with Delta and Omicron in two 

immunocompromised individuals at risk of severe COVID-19 disease identified during local 

co-circulation of both SARS-CoV-2 lineages. 

Case A was a patient aged between 60 - 70 years who returned a positive SARS-CoV-

2-specific polymerase chain reaction (PCR) result from a nasopharyngeal swab after presenting 

to the Emergency Department of a Sydney hospital with mild respiratory symptoms. Case B 

was a patient, aged between 50-60 years diagnosed by SARS-CoV-2 PCR after presenting to 

the same hospital with fever. Samples from both cases underwent whole genome sequencing 

as part of the prospective genomic surveillance program in New South Wales (NSW), 
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Australia.8 Only genomes confidently assigned to SARS-CoV-2 lineages (Supplementary 

Figure S1) are reported to the health authorities and shared globally via GISAID 

(https://www.gisaid.org). In contrast to the majority of community samples sequenced, those 

obtained from Cases A and B had unexpectedly high numbers of “heterozygous” (i.e., mixed 

nucleotides at a single site) calls (Supplementary Figure S2) and could not be unambiguously 

assigned to a SARS-CoV-2 lineage by the Pangolin software. This observation triggered a case 

review which revealed that both patients had chronic kidney disease due to type 2 diabetes, 

obesity and ischaemic heart disease. In addition, both were receiving haemodialysis treatment 

for 4-5 hours thrice weekly at the same community dialysis centre and therefore potentially 

exposed to multiple COVID-19 cases during treatment session. Given the high community 

incidence of COVID-19, infection control measures implemented at the dialysis centre to 

prevent nosocomial transmission included physical distancing and masking of patients at all 

times, decontamination of treatment stations and dialysis equipment after each session, four-

point personal protective equipment use by all clinical staff and patient surveillance testing by 

PCR at the time of each treatment. Despite the similarities in patient demographics, they were 

unknown to each other, had not received haemodialysis at the same time nor used the same 

equipment or treatment station.  

Neither patient had prior evidence of COVID-19 infection. Case A had received two 

doses of the COMIRNATYÒ (Pfizer) vaccine with the second dose ten weeks prior to 

diagnosis. Case B remained unvaccinated by choice.  

PCR did not detect human influenza viruses A or B, respiratory syncytial virus, 

parainfluenza viruses 1, 2, and 3, human metapneumovirus or rhinovirus in samples from both 

cases. A sample from an epidemiologically linked household contact of Case A, Case C, who 

was diagnosed several days after Case A was also sequenced.   

Following the observation of high numbers of heterozygous calls in samples collected 

from Cases A and B, (both exposed to COVID-19 patients potentially infected with different 

co-circulating lineages), additional viral sequencing and viral culture was performed. Due to 

the low viral load in the Day 0 samples from both cases, they were only able to be sequenced 

using Midnight primers and Illumina sequencing, while two longitudinal samples for each case, 

with increased viral loads were subjected to further analyses (Supplementary Table S1). Two 

respiratory swabs collected from Case A on Days 2 and 3, as well as two respiratory swabs 

from Case B collected on Days 3 and 11, were subjected to nucleic acid extraction, quantitative 

SARS-CoV-2 PCR and genome sequencing using short-read (NextSeq 500 (Illumina)) and 
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long-read (GridION (Oxford Nanopore Technologies; ONT)) protocols using Midnight 

primers. We also employed the probe-based Illumina Respiratory Viral Oligo panel (RVOP)9 

to collect reads unbiased by SARS-CoV-2 PCR amplification (see Online Methods for details). 

Viral yield in samples was variable but still significant and suggesting the presence of viable 

virus (Table 1). Careful review of the relative frequency of 17 Omicron lineage-defining 

markers and 10 VOC Delta lineage-defining markers10 clearly demonstrated co-infection with 

both lineages (Figures 1 & 2A). The overall proportion of Delta and Omicron was highly 

concordant between all three sequencing methods (Figure S3), however four lineage markers 

showed evidence of amplification bias when SARS-CoV-2 was amplified using Midnight 

primers (Figure S5). Population analysis of genomic data generated using RVOP methods 

estimated that the VOC proportions in samples from Case A were 21% Omicron and 77% Delta 

on Day 2, compared to 45% Omicron and 53% Delta on Day 3. Samples from Case B contained 

42% Omicron and 53% Delta on Day 3, and 11% Omicron and 84% Delta on Day 11 (Figures 

1, S3-S5). Despite the same pattern of mixed infection, the two cases were not genomically 

linked in a transmission pathway (Figure 2B). The two Omicron sequences were distinct 

representatives of the Omicron (sub-lineage BA.1) strain currently predominating in Sydney, 

while the two Delta sequences belonged to different genomic clusters of Delta (sub-lineage 

AY.39.1) also circulating locally (Figure 2, Table 1). These conclusions were supported by 

matching the Omicron sequence from Case A to the Omicron genome recovered from their 

household contact (Case C, Figure 2).  

Viral culture of the Case A, Day 3 sample yielded Delta four days post-infection, the 

consensus genome recovered from this culture and matched the genome reconstructed from the 

mixed sample. It is likely that Delta had overgrew Omicron as TMPRSS2 enhanced VeroE6 

cells are less permissible to Omicron, but highly adapted to Delta infection.11 Viral culture was 

retrospectively and unsuccessfully attempted for the specimen collected from Case B, Day 2. 

A previously described immunofluorescence assay (IFA)12 performed on sera collected from 

Case 2, Day 3 did not detect SARS-CoV-2 antibodies (i.e. IgG, IgA and IgM IFA titres all <10, 

trimeric spike IgG negative, nucleoprotein IgG negative).  

Although these findings confirm phylogenetically distinct and epidemiologically 

relevant SARS-CoV-2 variants in both cases, they are not sufficient to conclude whether these 

cases acquired their dual SARS-CoV-2 co-infection following sequential exposures to 

individuals with a single lineage infection. Further studies of SARS-CoV-2 within-host 

population dynamics are required to better understand these processes. The most likely 

hypothesis for these two cases of SARS-CoV-2 co-infection is the sustained exposure of 
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susceptible, immunosuppressed hosts to multiple patients infected with Delta or Omicron at a 

time when there was widespread community circulation of both VOCs. Case B appeared to be 

initially infected by Omicron and superinfected with Delta shortly prior to admission as there 

were only Omicron sequences in the Day 0 sample and high viral loads of Omicron and Delta 

obtained from the Day 3 sample.  

The identification of phylogenetically distinct and epidemiologically relevant SARS-

CoV-2 variants within the same host further expands the relevance of genomic surveillance 

and highlights the added value of patient and public health context during clinical genomics 

analysis. The recognition of mixed infections may also affect the selection of appropriate 

antiviral therapy and infection control measures. Whilst the multiple sequencing methods 

presented here demonstrated concordant results (Figure S3), not all of them are required to 

investigate every suspected co-infection case. The RVOP approach was particularly 

informative as it captured several lineage markers affected by amplification bias due to 

polymorphisms in whole genome sequencing primers (Supplementary Material, Figures S3-

S5). We acknowledge that Cases A and B had relatively equal proportions of sequences 

representing two lineages in at least one timepoint. The confident identification of minority 

populations of lineage-specific sequences (e.g., <10%) in more unbalanced populations might 

be significantly harder; access to longitudinal samples are needed to address these challenges. 

Genomic epidemiology has rapidly become a high-resolution tool for local and 

international public health surveillance and disease control. However, the international 

coverage of SARS-CoV-2 genomic surveillance remains heavily biased towards countries with 

specialised genomic facilities and research programs.3,13 Furthermore, genomic surveillance 

relies on data sharing by multiple and geographically distributed providers which employ 

different sequencing and bioinformatic techniques. The reliance on consensus genome data and 

strict data quality criteria used by genomic laboratories and data sharing environments were 

designed to minimise the noise from laboratory contamination events and sequencing 

imperfections. However, such quality metrics can, by design, filter out potentially significant 

cases associated with high heterozygosity due to mixed viral populations as presented here.  

In conclusion, these findings demonstrated the capacity of clinically and 

epidemiologically informed genomic surveillance to diagnose co-infections with SARS-CoV-

2 variants and highlight the needed for deeper analysis of genomic surveillance data in clinical 

and public health contexts. SARS-CoV-2 co-infections, particularly when they occur in 

vulnerable hosts may drive saltational evolution, thus emphasising the important role COVID-

19 genomic surveillance will play in diagnostic virology, in the era of mass vaccination. 
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Table 1. SARS-CoV-2 yield in Cases A and B 
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FIGURES  
Figure 1.  Genome-wide view of the variant frequency of the Delta and Omicron SARS-CoV-2 lineage defining polymorphisms in specimens 
sequenced using the RVOP SARS-CoV-2 enrichment protocol Pie graphs depict the average population frequency of Omicron and Delta lineage-
defining mutations in four clinical samples collected from Cases A and B. Segments in grey represent differences between the average read 
frequency of Omicron and Delta markers. A total of 27 polymorphisms defining Delta and Omicron lineages are presented in relation to the 
annotated SARS-CoV-2 genome. The frequency of sequencing reads encoding each mutation is shown by histograms highlighting the constellation 
of mutations defining each lineage. Blue bars demonstrate the frequency of mutations defining the Delta lineage and yellow bars the Omicron 
lineage. Due to the close genomic location of lineage defining mutations in the spike region some bars are overlapping. Read frequencies are 
collected from RVOP data but are highly concordant between sequencing methods and technologies. 
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Figure 2. Population and phylogenetic analysis of two cases of SARS-CoV-2 co-infection 
with Delta and Omicron VOCs. A. Population analysis of key lineage defining mutations in 
the SARS-CoV-2 spike gene for each specimen. Nucleotide frequency and relative coverage 
of genomic regions specific for either Omicron or Delta. The X-axis represents genomic 
positions and Y-axis indicates their relative frequencies derived from RVOP data. B. 
Unrooted maximum likelihood phylogeny representing the sequences obtained from Cases A, 
B and C in the context of global diversity of SARS-CoV-2. Genomes generated as part of this 
study are labelled individually. The predominant Delta lineage in Australia, AY.39.1, is 
highlighted. The Delta strains from cases A and B are from separate clades of AY.39.1 
circulating in Australia, whereas the two Omicron strains are both in the same sublineage of 
Omicron (BA.1) which dominated in Australia in December 2021-January 2022. Note that 
the Omicron samples from patients A and C are identical and hence overlap. Branch lengths 
are scaled according to the number of nucleotide substitutions per site.
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